Senin, 23 Maret 2015

Mekanisme Ledakan Bom


Beberapa tahun lalu di berbagai media massa, baik elektronik maupun cetak, sering bermunculan kasus peledakan bom di Indonesia. Barangkali kita masih ingat dengan nama Imam Samudra atau Amrozi. Sosok yang namanya melejit pasca peledakan Bom Bali I dan II ini sempat menjadi momok yang menakutkan. Kasus peledakan bom sering kali dikaitkan pada kedua sosok ini.
Namun, tahukah kita bagaimana proses tejadinya ledakan bom ini? Mengapa bisa timbul ledakan?
Tulisan ini tidak bermaksud mengajarkan pembaca bagaimana membuat bom. Namun, bermaksud untuk menjelaskan secara umum bagaimana mekanisme sederhana ledakan bom itu bisa terjadi ditinjau secara kimia.
Dalam istilah kimia, reaksi peledakan ini dikenal dengan nama reaksi eksplosif. Reaksi eksplosif merupakan reaksi kimia yang berlangsung sangat cepat dan berlangsung dalam waktu sangat singkat. Reaksi eksplosif ini akan membebaskan sejumlah energi yang sangat besar. Dalam skala yang besar, reaksi ini mampu menghancurkan benda-benda yang berada dalam radius daya ledaknya. Reaksi inilah yang dalam kehidupan sehari-hari dikenal dengan ledakan bom.
Reaksi peledakan ini biasanya berlangsung dengan adanya katalis. Katalis inilah yang menyebabkan suatu reaksi kimia berlangsung dengan cepat. Katalis adalah suatu zat yang dapat meningkatkan kecepatan reaksi tanpa memodifikasi perubahan energi gibbs standar dari suatu reaksi (Admin Alif, 2005).
Platina merupakan salah satu contoh katalis yang digunakan untuk mempercepat terjadinya reaksi antara hidrogen dan oksigen dalam fasa gas. Dari reaksi ini dapat menyebabkan ledakan.
Dari beberapa literatur, diketahui bahwa katalis dapat menghasilkan atom hidrogen dari molekul hidrogen dan atom ini akan menyebabkan terjadinya reaksi rantai yang sangat cepat.
Disamping katalis, reaksi peledakan juga bisa terjadi jika ada nyala api, seperti nyala dari korek api, dan sebagainya. Nyala api ini dapat menjadi pemicu terbentuknya radikal bebas. Dalam suatu mekanisme reaksi, radikal bebas ini dapat menyebabkan reaksi bercabang yang menghasilkan lebih dari satu radikal. Jika reaksi radikal ini terjadi dalam jumlah yang banyak, maka jumlah radikal bebas dalam suatu reaksi akan meningkat. Akhirnya reaksi akan berlangsung sangat cepat dan akan dibebaskan energi yang sangat besar. Selanjutnya terjadilah ledakan.
Albert Einstein pernah memperkenalkan kepada dunia mengenai hubungan antara energi dengan massa dan kecepatan suatu benda yang dikenal dengan persamaan E = M.C2. Jika kita hubungkan dengan reaksi peledakan diatas, didapatkan suatu kesimpulan bahwa suatu reaksi peledakan akan semakin besar jika massa reaktan (zat yang mengalami reaksi) digunakan dalam jumlah besar dengan adanya kecepatan yang sangat tinggi. Einstein mendefinisikan kecepatan disini adalah kecepatan cahaya yang dikuadratkan. Dari penggunaan tersebut terjadinya ledakan yang dasyat.
Dalam skala laboratorium reaksi peledakan ini pun bisa diuji-cobakan. Dari berbagai literatur, di laboratorium terdapat banyak sekali zat-zat kimia yang jika dicampur dapat menyebabkan terjadinya ledakan. Meski ledakan yang terjadi tergolong kecil, namun secara prinsip hampir sama reaksi ledakan lainnya dalam skala besar. Tinggal kita memperbesar konsentrasinya saja. Selanjutnya agar terjadi ledakan, maka ditambahkanlah katalis atau nyala api untuk mempercepat terjadinya reaksi atau pembentukan radikal bebas. Akibatnya akan membebaskan sejumlah energi yang besar.

Pembangkit Listrik Tenaga Nuklir (PLTN)

Pembangkit Listrik Tenaga Nuklir atau yang lebih dikenal dengan singkatan PLTN, sudah digunakan teknologinya lebih dari 50 tahun yang lalu. Keunggulan PLTN adalah tidak menghasilkan emisi gas CO2 sama sekali. Selain itu PLTN juga mampu menghasilkan daya stabil yang jauh lebih besar jika dibandingkan dengan pembangkit listrik lainnya. Perlu diketahui juga bahwa bahan bakar uranium yang sudah habis dipakai dapat didaur ulang kembali menghasilkan bahan bakar baru untuk teknologi di masa depan.

Indonesia sebenarnya sangat cocok mengembangkan pembangkit listrik ini, sebagai upaya diversifikasi penggunaan pembangkit listrik primer berbahan bakar fosil, seperti batubara, minyak bumi, dan gas alam. Dengan penanggulangan radiasi yang cermat dan berlapis, PLTN dapat menjadi solusi kebutuhan energi listrik yang besar di Indonesia.
Prinsip Kerja PLTN
Prinsip kerja PLTN hampir mirip dengan cara kerja pembangkit listrik tenaga uap (PLTU) berbahan bakar fosil lainnya. Jika PLTU menggunakan boiler untuk menghasilkan energi panasnya, PLTN menggantinya dengan menggunakan reaktor nuklir.
Seperti terlihat pada gambar 1, PLTU menggunakan bahan bakar batubara, minyak bumi, gas alam dan sebagainya untuk menghasilkan panas dengan cara dibakar, kemudia panas yang dihasilkan digunakan untuk memanaskan air di dalam boiler sehingga menghasilkan uap air, uap air yang didapat digunakan untuk memutar turbin uap, dari sini generator dapat menghasilkan listrik karena ikut berputar seporos dengan turbin uap.
PLTN juga memiliki prinsip kerja yang sama yaitu di dalam reaktor terjadi reaksi fisi bahan bakar uranium sehingga menghasilkan energi panas, kemudian air di dalam reaktor dididihkan, energi kinetik uap air yang didapat digunakan untuk memutar turbin sehingga menghasilkan listrik untuk diteruskan ke jaringan transmisi.

Penerapan Termodinamika dalam Bidang Pertanian Teknik Pendinginan

Sejarah teknik pendinginan berkembang sejalan dengan perkembangan peradaban manusia di wilayah sub-tropik.  Secara alamiah, manusia yang tinggal di wilayah sub-tropik menyadari bahwa bahan pangan yang mudah rusak ternyata dapat disimpan lebih lama dan lebih baik pada saat musim dingin dibandingkan dengan pada saat musim panas.  Kesadaran inilah yang memandu manusia pada saat itu mulai memanfaatkan “es alam” untuk memperpanjang masa simpan bahan pangan yang mudah rusak.

Penggunaan es alam ini bahkan masih dilakukan hingga abad ke-20, dan bahkan menurut catatan IIR (Intenational Institute of Refrigeration) hingga awal abad ke-20 penggunaan es alam masih lebih banyak dibandingkan “es buatan”. Es alam adalah es yang dihasilkan tanpa peralatan refrigerasi, baik yang diperoleh dari sungai atau danau yang membeku pada musim dingin atau yang sengaja dibekukan secara alamiah akibat radiasi termal dari permukaan air ke langit.

Perkembangan teknik pendinginan selanjutnya masih terjadi secara tidak sengaja, yaitu penggunaan larutan air-garam untuk mendapatkan suhu yang lebih rendah.  Menurut catatan Ibn Abi Usaibia, seorang penulis Arab, penggunaan larutan air-garam ini sudah dilakukan di India sekitar abad ke-4. Garam yang digunakan pada larutan tersebut adalah potasium nitrat, sebagaimana dicatat oleh seorang dokter Italia bernama Zimara pada tahun 1530 dan dokter Spanyol bernama Blas Villafranca pada tahun 1550. Fenomena pencampuran garam pada salju untuk mendapatkan suhu lebih rendah baru dapat dijelaskan oleh Battista Porta pada tahun 1589 dan Trancredo pada tahun 1607.

Gambar 1-2. Robert Boyle
Teknik pendinginan mulai berkembang secara ilmiah sejak abad ke-17, dimulai dari penelitian tentang pemantulan melalui efek panas dan dingin yang dilakukan oleh Robert Boyle (1627-1691) di Inggris dan Mikhail Lomonossov (1711-1765) di Rusia. Selanjutnya, penelitian mengenai termometri yang dimulai oleh Galileo dikembangkan kembali oleh Guillaume Amontons (1663-1705) di Perancis, Isaac Newton (1642-1727) di Inggris, Daniel Fahrenheit (1686-1736) orang German yang bekerja di Inggris dan Belanda, René de Réaumur (1683-1757) di Perancis dan Anders Celsius (1701-1744) di Swedia. Tiga ilmuwan yang disebutkan terakhir merupakan penemu sistem skala pengukuran suhu, dan masing-masing namanya diabadikan pada sistem skala tersebut yaitu Fahrenheit, Reaumur dan Celsius.  Setelah Anders Celsius menemukan termometer skala centesimal pada tahun 1742 di Swedia, disepakati bahwa sistem skala yang digunakan pada Sistem Internasional adalah Celsius.

Pada awal abad ke-18, William Cullen (1710-1790) menemukan terjadinya penurunan suhu pada saat ethyl ether menguap. Cullen, bahkan, pada tahun 1755 berhasil mendapatkan sedikit es dengan cara menguapkan air di labu uap. Murid dan penerus Cullen, yaitu seorang Scotland yang bernama Joseph Black (1728-1799) berhasil menjelaskan pengertian panas dan suhu, sehingga sering dianggap sebagai penemu kalorimetri. Bidang ini akhirnya dikembangkan dengan sangat baik oleh para ilmuwan Perancis, seperti Pierre Simon de Laplace (1749-1827), Pierre Dulong (1785-1838), Alexis Petit (1791-1820), Nicolas Clément-Desormes (1778-1841) dan Victor Regnault (1810-1878). 

B. Perkembangan Mesin Pendingin Sistem Kompresi Uap

Tulisan Sadi Carnot (1796-1832), seorang Perancis, yang sangat terkenal pada tahun 1824 menjadi inspirasi bagi banyak penelitian yang dilakukan mengenai berbagai konsep termodinamika dan sistem pendinginan, termasuk James Prescot Joule (Inggris, 1818-1889), Julios von Mayer (Jerman, 1814-1878), Herman von Helmholtz (Jerman, 1821-1894), Rudolph Clausius (Jerman, 1822-1888), Ludwig Boltzmann (Austria, 1844-1906), dan William Thomson (Lord Kelvin, Inggris, 1824-1907).
Gambar 1-3. Sadi Carnot


Penemuan-penemuan di atas menjadi awal yang sangat berharga dalam sejarah penemuan mesin-mesin pendinginan dan zat-zat pendinginnya. Perkembangan ini dimulai dengan mesin pendingin mekanis, setelah seorang Amerika bernama Oliver Evans (1755-1819) mampu menjelaskan siklus refrigerasi kompresi uap. Pada tahun 1835, seorang Amerika lainnya yang bekerja di Inggris yaitu Jacob Perkins (1766-1849) berhasil mendapatkan paten untuk mesin pendingin temuannya yang bekerja berdasarkan siklus kompresi uap tersebut. 

Gambar 1-4. Siklus Refrigerari Kompresi Uap

Fluida kerja (refrigeran) yang digunakan Perkins pada mesin pendinginnya tersebut adalah ethyl ether.  James Harrison (1816-1893), seorang Skotlandia yang pindah ke Australia, berhasil membuat mesin pendingin yang dapat bekerja dengan baik pada skala industrial.  Mesin tersebut dipatenkan oleh Harrison pada tahun 1855, 1856, dan 1857.  Mesin pendingin Harrison, yang diproduksi di Inggris, masih menggunakan ethyl ether sebagai fluida kerja, dan mampu menghasilkan es maupun larutan pendingin (refrigeran sekunder).

Dengan ditemukannya mesin pendingin sistem kompresi uap, terjadi perkembangan yang cepat dalam penemuan zat-zat pendingin (refrigeran).  Charles Tellier (1828-1913), seorang Perancis, memperkenalkan penggunaan dimethyl ehter sebagai refigeran.  Pada tahun 1862, Tellier juga meneliti penggunaan amonia (NH3) sebagai refrigeran, meskipun penggunaannya secara luas pada skala industrial baru dapat dilakukan oleh seorang Jerman Carl von Linde (1842-1934). Refrigeran amonia masih banyak digunakan hingga sekarang, khususnya pada industri pembekuan pangan. 

Thaddeus Lowe (1832-1913) mulai menggunakan karbon-dioksida (CO2) sebagai refrigeran. Meskipun sempat ditinggalkan, penggunaan karbon-dioksida belakangan ini kembali dikembangkan sebagai refrigeran yang ramah lingkungan. Sulfur-dioksida (SO2) pertama kali digunakan sebagai refrigeran oleh ahli fisika Swiss Raoul Pierre Pictet (1846-1929), tetapi akhirnya tidak digunakan lagi sesaat sebelum perang dunia II.  Metil-klorida (Ch3Cl) juga digunakan oleh orang Perancis C. Vincent  sebagai refrigeran pada tahun 1878, meskipun akhirnya hilang dari peredaran pada tahnun 1960-an.

Didasarkan pada hasil penelitian Swarts yang dilakukan selama kurun 1893-1907 di Ghent, suatu tim peneliti Frigidaire Corporation di Amerika, yang dipimpin oleh Thomas Midgley berhasil mengembangkan refrigeran fluoro-carbon pertama pada tahun 1930.  Refrigeran fluoro-carbon dianggap sebagai refrigeran yang aman karena tidak bersifat toksik dan tidak mudah terbakar.  Refrigeran CFC (chloro-fluoro-carbon) pertama, yaitu R12 (CF2Cl2) mulai dilepas ke pasar pada tahun 1931, diikuti dengan refrigeran HCFC (hidro-chloro-fluoro-carbon) pertama, yaitu R22 (CHF2Cl) pada tahun 1934.  Pada tahun 1961, campuran azeotropik pertama, yaitu R502 (R22/R115), diperkenalkan ke pasar sebagai refrigeran.  

Refrigeran CFC, khususnya R12, dianggap sebagai zat yang sangat istimewa sebagai fluida kerja mesin pendingin sistem kompresi uap, hingga pemenang Nobel dari Amerika (F.S. Rowland dan M.J. Molina) mempublikasikan hasil penelitiannya pada tahun 1974.  Rowland dan Molina menyimpulkan bahwa klorin yang dilepaskan oleh zat halogenasi hidrokarbon menyebabkan terjadinya perusakan lapisan ozon di angkasa.  Untuk menganggapi temuan ini, pada tahun 1987 telah disepakati Protokol Montreal mengenai pelarangan penggunaan zat-zat yang bersifat merusak lapisan ozon.

Refrigeran CFC dan HCFC termasuk pada kategori zat perusak ozon, sehingga penggunaannya sebagai refrigeran juga dilarang.  Sebagai gantinya, disarankan penggunaan HFC (hidro-fluoro-carbon), yaitu refrigeran yang dihalogenasi tapi tidak diklorinasi.  Akan tetapi, refrigeran HFC, baik yang murni (R134a) maupun campurannya (R410A, R407A, R404A, dll), juga menimbulkan efek lingkungan yaitu pemanasan global.  Pada Protokol Kyoto, yang ditanda-tangani pada 11 Desember 1997, refrigeran HFC termasuk zat yang dilarang peredarannya karena menyebabkan pemanasan global.  Indonesia, sebagai negara yang ikut meratifikasi Protokol Montreal maupun Protokol Kyoto, berkewajiban untuk melaksanakan setiap fasal dalam protokol yang disepakati tersebut.

Perkembangan lain dalam sistem kompresi uap adalah pada komponen peralatannya.  Pada awalnya mesin pendingin sistem kompresi uap menggunakan kompresor dengan piston yang besar dan lambat, tetapi sejak akhir abad ke-19 berubah menjadi lebih ringan dan cepat.  Pada tahun 1934 A. Lysholm berhasil mengembangkan kompresor ulir dengan rotor ganda di Swedia, sedangkan pada tahun 1967 B. Zimmern mengembangkan kompresor ulir rotor tunggal di Perancis. 
Gambar 1-5. Kompresor

Kompresor scroll sebenarnya telah dipatenkan oleh seorang Perancis bernama Leon Creux pada tahun 1905, tetapi baru dapat dikembangkan pada tahun 1970-an.  Kompresor sentrifugal dikembangkan atas dasar penelitian seorang Perancis bernama Auguste Rateau tahun 1890 dan orang Amerika bernama Willis Carrier tahun 1911.  Kompresor hermetik dikembangkan untuk mengatasi kebocoran refrigeran oleh Father Audiffren pada tahun 1905 di Perancis, dan digunakan sangat banyak saat ini.

C. Perkembangan Sistem Pendingin Lainnya

Perkembangan sistem pendingin selain sistem kompresi uap dipicu oleh kemajuan yang dicapai dalam bidang termodinamika yang sangat pesat pada abad ke-19.  Kemajuan ini dimulai dari penelitian mengenai gas oleh ahli fisika Inggris Boyle, disusul oleh Edme Mariotte (1620-1684), Jacques Charles (1746-1823) dan Louis Joseph Gay-Lussac (1778-1850), hingga penelitian mengenai mesin uap yang dilakukan oleh orang Skotlandia bernama James Watt (1736-1819).  Ilmuwan Perancis Sadi Carnot (1796-1832) akhirnya mempublikasikan hasil karyanya yang menjadi inti Hukum Termodinamika Kedua pada tahun 1824.  Berbagai penelitian mengenai teknik pendinginan sangat banyak dilakukan sebagai dampak dari kemajuan termodinamika ini.

Disamping mesin pendingin sistem kompresi uap, sebagaimana dijelaskan di atas, berbagai sistem pendingin lain juga ditemukan selama abad ke-19.  Salah satu diantaranya adalah sistem pendingin siklus gas yang muncul akibat penemuan ”mesin udara” siklus terbuka oleh John Gorrie (1803-1855), seorang dokter Amerika.  Gorrie mematenkan penemuan tersebut setelah berhasil mendiningkan brine ke suhu -7 oC pada tahun 1850 dan 1851.  Alexander Kirk (1830-1892) berhasil mengembangkan mesin siklus tertutup yang dapat mendinginkan hingga suhu -13 oC pada tahun 1864.  Mesin ini didasarkan pada motor udara panas yang dikembangkan oleh pastor Skotlandia Robert Stirling pada tahun 1837.

Gambar 1-6. Termoelectric cooling
Pada tahun 1834, Ahli fisika Perancis Jean Charles Peltier (1785-1845) menemukan bahwa aliran arus searah yang melalui jembatan dua logam dapat menyebabkan pendinginan pada salah satu logam dan pemanasan pada logam lainnya.  Sampai tahun 1940-an, sistem termoelektrik hanya dianggap sebagai keingin-tahuan ilmiah, hingga berkembangnya pengetahuan mengenai semi-konduktor.  Akan tetapi, hingga sekarang penggunaan sistem pendingin termoelektrik secara komersial relatif sangat kecil.

Salah satu sistem pendingin yang berkembang dengan baik, disamping sistem kompresi uap, adalah sistem absorbsi.  Mesin pendingin sistem absorbsi kontinyu yang pertama ditemukan pada tahun 1859 oleh seorang Perancis bernama Ferdinand Carré (1824-1900). Mesin temuan Carré ini menggunakan air sebagai absorber dan amonia sebagai refrigeran.  Sistem absorbsi tak-kontinyu sebenarnya lebih dulu dikembangkan (hasil temuan saudara Ferdinand Carré yang bernama Edmond Carré pada tahun 1866), tetapi tidak terlalu berhasil.  Pada tahun 1913, seorang Jerman bernama Edmund Altenkirch berhasil mempelajari dan menjelaskan sifat termodinamik sistem ini dengan rinci.  Pada tahun 1940-an, sistem absorbsi dengan litium-bromida sebagai absorber dan air sebagai refrigeran berhasil dikembangkan di Amerika, sebagai modifikasi dari sistem yang dikembangkan oleh Carré.  Sistem absorbsi litium-bromida-air ini banyak digunakan dalam bidang pengkondisian udara.