Jumat, 23 Januari 2015

Konsep Dasar Termodinamika

Pengertian dasar termodinamika.
Thermodinamika adalah ilmu tentang energi, yang secara spesific membahas tentang hubungan antara energi panas dengan kerja. Seperti telah diketahui bahwa energi didalam alam dapat terwujud dalam berbagai bentuk, selain energi panas dan kerja, yaitu energi kimia, energi listrik, energi nuklir, energi gelombang elektromagnit, energi akibat gaya magnit, dan lain-lain . Energi dapat berubah dari satu bentuk ke bentuk lain, baik secara alami maupun hasil rekayasa tehnologi. Selain itu energi di alam semesta bersifat kekal, tidak dapat dibangkitkan atau dihilangkan, yang terjadi adalah perubahan energi dari satu bentuk menjadi bentuk lain tanpa ada pengurangan atau penambahan. Prinsip ini disebut sebagai prinsip konservasi atau kekekalan energi. Prinsip thermodinamika tersebut sebenarnya telah terjadi secara alami dalam kehidupan sehari-hari. Bumi setiap hari menerima energi gelombang elektromagnetik dari matahari, dan dibumi energi tersebut berubah menjadi energi panas, energi angin, gelombang laut, proses pertumbuhan berbagai tumbuh-tumbuhan dan banyak proses alam lainnya. Proses didalam diri manusia juga merupakan proses konversi energi yang kompleks, dari input energi kimia dalam maka nan menjadi energi gerak berupa segala kegiatan fisik manusia, dan energi yang sangat bernilai yaitu energi pikiran kita. Dengan berkembangnya ilmu pengetahuan dan teknologi, maka prinsip alamiah dalam berbagai proses thermodinamika direkayasa menjadi berbagai bentuk mekanisme untuk membantu manusia dalam menjalankan kegiatannya. Mesin-mesin transportasi darat, laut, maupun udara merupakan contoh yang sangat kita kenal dari mesin konversi energi, yang merubah energi kimia dalam bahan bakar atau sumber perpindahan diatas permukaan bumi, bahkan sampai di luar angkasa. Pabrik-pabrik dapat memproduksi berbagai jenis barang, digerakkan oleh mesin pembangkit energi listrik yang menggunakan prinsip konversi energi panas dan kerja. Untuk kenyamanan hidup, kita memanfaatkan mesin airconditioning, mesin pemanas, dan refrigerators yang menggunakan prinsip dasar thermodinamila. Aplikasi thermodinamika yang begitu luas dimungkinkan karena perkembangan ilmu thermodinamika sejak abad 17 yang dipelopori dengan penemuan mesin uap di Inggris, dan diikuti oleh para ilmuwan thermodinamika seperti Willian Rankine, Rudolph Clausius, dan Lord Kelvin pada abad ke 19. Pengembangan ilmu thermodinamika dimulai dengan pendekatan makroskopik, yaitu sifat thermodinamis didekati dari perilaku umum partikel-partikel zat yang menjadi media pembawa energi, yang disebut pendekatan thermodinamika klasik. Pendekatan tentang sifat thermodinamis suatu zat berdasarkan perilaku kumpulan partikel-partikel disebut pendekatan mikroskopis yang merupakan perkembangan ilmu thermodinamika modern, atau disebut thermodinamika statistik. Pendekatan thermodinamika statistik dimungkinkan karena perkembangan teknologi komputer, yang sangat membantu dalam menganalisis data dalam jumlah yang sangat besar.
Metode termodinamika statistik dikembangkan pertama kali beberapa tahun terakhir oleh Boltzmann di Jerman dan Gibbs di Amerika Serikat. Dengan ditemukannya teori kuantum, Bose, Einstein, Fermi, dan Dirac memperkenalkan beberapa modifikasi ide asli Boltzmann dan telah berhasil dalam menjelaskan beberapa aspek yang tidak dipenuhi oleh statistik Boltzmann.

Pendekatan statistik memiliki hubungan dekat dengan termodinamika dan teori kinetik. Untuk sistem partikel di mana energi partikel bisa ditentukan, kita bisa menurunkan dengan statistik mengenai persamaan keadaan dari suatu bahan dan persamaan energi bahan tersebut. Termodinamika statistik memberikan sebuah penafsiran tambahan tentang konsep entropi.

Termodinamika statistik (Mekanika statistik), tidak seperti teori kinetik, tidak fokus pada pertimbangan tumbukan antara 1 molekul dengan molekul lain atau dengan permukaan secara detail. Malahan ia mengambil keuntungan dari fakta bahwa molekul itu memiliki jumlah yang sangat banyak dan sifat rata-rata dari sejumlah besar molekul bisa dihitung walaupun tidak berisi informasi tentang molekul tertentu. Jadi sebagai misal, perusahaan asuransi bisa memprediksi dengan ketelitian yang tinggi tentang harapan hidup rata-rata semua orang yang yang lahir di Amerika Serikat pada tahun yang diberikan, tanpa mengetahui keadaan kesehatan salah satu dari orang-orang tersebut.
2.2  Klasifikasi Sistem Termodinamika
Suatu sistem thermodinamika adalah sustu masa atau daerah yang dipilih, untuk dijadikan obyek analisis. Daerah sekitar sistem tersebut disebut sebagai lingkungan. Batas antara sistem dengan lingkungannya disebut batas sistem (boundary), seperti terlihat pada Gambar 1.1. Dalam aplikasinya batas sistem nerupakan bagian dari sistem maupun lingkungannya, dan dapat tetap atau dapat berubah posisi atau bergerak.
Gambar 1.1. Skema sistem thermodinamika
Sistem termodinamika bisa diklasifikasikan ke dalam tiga kelompok:
1. Sistem tertutup; 2. Sistem terbuka; dan 3. Sistem terisolasi.
1. Sistem tertutup.
Merupakan sistem massa tetap dan identitas batas sistem ditentukan oleh ruang zat yang menempatinya. Contoh sistem tertutup adalah suatu balon udara yang dipanaskan, dimana masa udara didalam balon tetap, tetapi volumenya berubah, dan energi panas masuk kedalam masa udara didalam balon Sistem tertutup ditunjukkan oleh gambar 1. Gas di dalam silinder dianggap sebagai suatu sistem. Jika panas diberikan ke silinder dari sumber luar, temperatur gas akan naik dan piston bergerak ke atas.
Gambar 1. Sistem termodinamika tertutup.
Ketika piston naik, batas sistem bergerak. Dengan kata lain, panas dan kerja melewati batas sistem selama proses, tetapi tidak ada terjadi penambahan atau pengurangan massa zat.
Asyari-Daryus, Termodinamika Teknik I Universitas Darma Persada – Jakarta. 9
2. Sistem terbuka
Pada sistem ini, zat melewati batas sistem. Panas dan kerja bisa juga melewati batas sistem. Gambar 2 menunjukkan diagram sebuah kompresor udara yang menggambarkan sistem terbuka ini.
Gambar 2. Sistem termodinamika terbuka.
Zat yang melewati batas sistem adalah udara bertekanan rendah (L.P) yang memasuki kompresor dan udara bertekanan tinggi (H.P) yang meninggalkan kompresor. Kerja melewati batas sistem melalui poros penggerak dan panas ditransfer melewati batas sistem melalui dinding silinder.
3. Sistem terisolasi
Adalah sebuah sistem yang sama sekali tidak dipengaruhi oleh lingkungannya. Sistem ini massanya tetap dan tidak ada panas atau kerja yang melewati batas sistem.
2.3 Sifat-sifat Sistem
Keadaan sistem bisa diidentifikasi atau diterangkan dengan besaran yang bisa diobservasi seperti volume, temperatur, tekanan, kerapatan dan sebagainya. Semua besaran yang mengidentifikasi keadaan sistem disebut sifat-sifat sistem.
2.4 Klasifikasi Sifat-sifat Sistem
Sifat-sifat termodinamika bisa dibagi atas dua kelompok umum:
1. Sifat ekstensif, dan 2. Sifat intensif.
1. Sifat ekstensif
Besaran sifat dari sistem dibagi ke dalam beberapa bagian. Sifat sistem, yang harga untuk keseluruhan sistem merupakan jumlah dari harga komponen-komponen individu sistem tersebut, disebut sifat ekstensif. Contohnya, volume total, massa total, dan energi total sistem adalah sifat-sifat ekstensif.
2. Sifat intensif
Perhatikan bahwa temperatur sistem bukanlah jumlah dari temperatur-temperatur bagian sistem. Begitu juga dengan tekanan dan kerapatan sistem. Sifat-sifat seperti temperatur, tekanan dan kerapatan ini disebut sifat intensif.
2.5 Kesetimbangan Termal
Misalkan dua benda yang berasal dari material yang sama atau berbeda, yang satu panas, dan lainnya dingin. Ketika benda ini ditemukan, benda yang panas menjadi lebih dingin dan benda yang dingin menjadi lebih panas. Jika kedua benda ini dibiarkan bersinggungan untuk beberapa lama, akan tercapai keadaan dimana tidak ada perubahan yang bisa diamati terhadap sifat-sifat kedua benda tersebut. Keadaan ini disebut keadaan kesetimbangan termal, dan kedua benda akan mempunyai temperatur yang sama.
2.6 Bentuk-bentuk energi
Telah disampaikan sebelumnya bahwa energi dapat terwujud dalam berbagai bentuk, yaitu energi kimia, energi panas, energi mekanis, energi listrik, energi nuklir, energi gelombang elektromagnetik, energi gaya magnit, dan lain-lain. Suatu media pembawa energi dapat mengandung berbagai bentuk energi tersebut sekaligus, dan jumlah energinya disebut energi total (E). Dalam analisis thermodinamika sering digunakan energi total setiap satuan masa media (m), yang disebut sebagai energi per-satuan masa (e) yaitu,
Berbagai bentuk energi diatas dapat pula dikelompokkan menjadi dua bentuk, yaitu energi makroskopik dan energi mikroskopik. Energi makroskopik adalah keberadaan energi ditandai dari posisinya terhadap lingkungannya atau terhadap suatu referensi yang ditentukan. Contoh bentuk energi makroskopik adalah energi kinetik (KE) dan energi potensial (PE). Keberadaan energi mikroskopik ditentukan oleh struktur internal dari= zat pembawa energi sendiri dan tidak tergantung kepada lingkungannnya, yaitu struktur dan gerakan molekul zat tersebut. Energi mikroskopik ini disebut sebagai energi internal (U).
Energi makroskopik berhubungan dengan gerakan masa pembawa energi, dan pengaruh luar seperti gaya gravitasi, pengaruh energi listrik, sifat magnit, dan tegangan pemukaan fluida. Energi kinetis KE adalah energi yang disebabkan oleh gerakan relatif terhadap suatu referensi, dan besarnya adalah:
atau dalam bentuk energi per-satuan masa:
dengan,  m = satuan masa media pembawa energi
  V = satuan kecepatan gerakan masa.
Energi potensial adalah energi yang disebabkan oleh posisi elevasinya dalam medan gravitasi, dan besarnya adalah:
PE = m g z
Atau dalam bentuk energi per-satuan masa,
pe = g z
dengan, g = gaya gravitasi
z = posisi elevasi terhadap suatu referensi.
Energi internal meliputi semua jenis energi mikroskopik, yaitu akibat dari struktur dan aktivitas molekul dalam masa yang ditinjau. Struktur molekul adalah jarak antar molekul dan besar gaya tarik antar molekul, sedang aktivitas molekul adalah kecepatan gerak molekul. Energi laten adalah energi yang merubah jarak dan gaya tarik antar molekul, sehingga masa berubah fase antara fase padat atau cair menjadi gas. Energi sensibel merubah kecepatan gerak molekul, yang ditandai oleh perubahan temperatur dari masa yang ditinjau. Energi kimia adalah energi internal sebagai akibat dari komposisi kimia sua tu zat, yang merupakan energi yang mengikat atom dalam molekul zat tersebut. Perubahan struktur atom menyebabkan perubahan energi pengikat atom dalam molekul, sehingga reaksinya dapat melepaskan energi (eksothermis) misalnya dalam reaksi pembakaran, atau memerlukan energi (indothermis). Bentuk energi internal lainnya adalah energi nuklir, yang merupakan energi ikatan antara atom dengan intinya.
Dalam bahasan thermodinamika efek dari jenis energi makroskopik lain yaitu energi magetik, dan tegangan permukaan fluida dapat diabaikan, sehingga energi total E dari masa pembawa energi tersebut adalah:
E = U + KE + PE = U +  + mgz
atau dalam bentuk energi per-satuan masa,
e = u +ke +pe = u +  + gz
Dalam aplikasi bidang teknik masa atau sistem thermodinamika yang ditinjau biasanya tidak bergerak selama proses berlangsung, sehingga perubahan energi potensial dan energi kinetisnya sama dengan nol.
2.7  Karakteristik
Karakteristik yang menentukan sifat dari sistem disebut property dari sistem, seperti tekanan P, temperatur T, volume V, masa m, viskositas, konduksi panas, dan lain-lain. Selain itu ada juga property yang disefinisikan dari property yang lainnya seperti, berat jenis, volume spesifik, panas jenis, dan lain-lain. Suatu sistem dapat berada pada suatu kondisi yang tidak berubah, apabila masing-masing jenis property sistem tersebut dapat diukur pada semua bagiannya dan tidak berbeda nilainya. Kondisi tersebut disebut sebagai keadaan (state) tertentu dari sistem, dimana sistem mempunyai nilai property yang tetap. Apabila property nya berubah, maka keadaan sistem tersebut disebut mengalami perubahan keadaan. Suatu sistem yang tidak mengalami perubahan keadaan disebut sistem dalam keadaan seimbang (equilibrium). Perubahan sistem thermodinamika dari keadaan seimbang satu menjadi keadaan seimbang lain disebut proses, dan rangkaian keadaan diantara keadaan awal dan akhir disebut linasan proses seperti terlihat pada Gambar 1.2.
Gambar 1.2. Proses dari keadaan 1 ke keadaan 2
Tergantung dari jenis prosesnya, maka keadaan 2 dapat dicapai dari keadaan 1 melalui berbagai lintasan yang berbeda. Proses thermidinamika biasanya digambarkan dalam sistem koordinat 2 dua property, yaitu P-V diagram, P-v diagram, atau T-S diagram. Proses yang berjalan pada satu jenis property tetap, disebut proses iso - diikuti nama property nya, misalnya proses isobaris (tekanan konstan), proses isochoris (volume konstan), proses isothermis (temperatur konstan) dan la in-lain. Suatu sistem disebut menjalani suatu siklus, apabila sistem tersebut menjalani rangkaian beberapa proses, dengan keadaan akhir sistem kembali ke keadaan awalnya. Pada Gambar 1.3 (a) terlihat suatu siklus terdiri dari 2 jenis proses, dan Gambar 1.3 (b) siklus lain dengan 4 jenis proses.
(a). Siklus dengan 2 proses (b). Siklus dengan 4 proses
Gambar 1.3. Diagram siklus thermodinamika
2.8 SISTEM SATUAN, TEKANAN, DAN TEMPERATUR.
2.8.1  Sistem Satuan.
Suatu sistem satuan adalah sistem besarn atau unit untuk mengkuantifikasikan dimensi dari suatu property. Sistem satuan yang sekarang dipergunakan di seluruh dunia, termasuk Indonesia, adalah Sistem SI  (Sistem Internasional. Sistem ini menggantikan 2 sistem yang dipergunakan sebelumnya, yaitu sistem British dan sistem Metris. Dalam sistem SI ada 7 macam dimensi dasar, yaitu panjang (m), massa (kg), waktu (detik), temperatur (K), arus listrik (A), satuan sinar (candela-c), dan satuan molekul (mol). Satuan gaya merupakan kombinasi dari masa dan percepatan, dan mempunyai besaran N (Newton), yang didefinisikan menurut Hukum Newton,
F = m a
Dan 1 N adalah gaya yang diperlukan untuk memberikan percepatan sebesar 1 m/det2 pada suatu masa sebesar 1 kg sehingga.
1 N = 1 kg. m/det2
Ukuran berat (W) adalah gaya yang ditimbulkan oleh masa m kg, dengan percepatan sebesar medan gravitasi yang terjadi (g), sebagai berikut.
W = m g
Satuan W adalah Newton, sedang besar gravitasi di bumi adalah 9,807 m/det2 di permukaan laut dan semakin kecil dengan bertambahnya elevasi. Kerja yang merupakan salah satu bentuk energi, adalah gaya kali jarak dengan satuan N.m, dan disebut pula J (Joule) yaitu,
1 J = 1 N.m
Satuan Joule juga digunakan dalam dimensi energi panas, dan biasanya ukurannya dalam kJ (kilojoule) atau MJ (Mega Joule).